Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
J Pharm Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582284

RESUMO

Dabigatran etexilate (DABE) is a lipophilic double alkyl ester prodrug of dabigatran (DAB) which is a serine protease inhibitor used clinically as an anticoagulant. Recently, translocation of serine protease enzymes, including trypsin, from the gut into the mesenteric lymph and then blood has been associated with organ failure in acute and critical illnesses (ACIs). Delivery of DABE into mesenteric lymph may thus be an effective strategy to prevent organ failure in ACIs. Most drugs access the mesenteric lymph in low quantities following oral administration, as they are rapidly transported away from the intestine via the blood. Here, we examine the potential to deliver DABE into the mesenteric lymph by promoting association with lymph lipid transport pathways via co-administration with a lipid-based formulation (LBF). A series of self-emulsifying LBFs were designed and tested in vitro for their potential to form stable DABE loaded emulsions and keep DABE solubilised and stable over time in simulated gastrointestinal conditions. The LBFs were found to form fine emulsions with a droplet size of 214 ± 30 nm and DABE was stable in the formulation. The stability of DABE in vitro in simulated intestinal conditions, plasma and lymph samples was also evaluated to ensure stability in collected samples and to evaluate whether the prodrug is likely to release active DAB. Ultimately, a highly uniform and stable self-emulsifying Type III A LBF of DABE was chosen for progression into in vivo studies in male Sprague Dawley rats to confirm the lymphatic uptake and plasma pharmacokinetics. Both in vitro and in vivo in plasma and lymph, DABE was rapidly converted to an intermediate and DAB. The main species present in vivo in both plasma and lymph was DAB and mass transport of DABE and DAB in lymph was minimal (∼0.5 % of dose). Importantly, the concentration of DABE in lymph was substantially (20-176 fold) higher than in plasma, supporting that if the prodrug were stable and did not convert to DAB in the intestine, it would be lymphatically transported. Future studies will therefore focus on optimizing the design of the prodrug and formulation to improve stability during absorption and further promote lymphatic uptake.

2.
J Surg Res ; 296: 603-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350299

RESUMO

INTRODUCTION: Ischemic gut injury is common in the intensive care unit, impairs gut barrier function, and contributes to multiorgan dysfunction. One novel intervention to mitigate ischemic gut injury is the direct luminal delivery of oxygen microbubbles (OMB). Formulations of OMB can be modified to control the rate of oxygen delivery. This project examined whether luminal delivery of pectin-modified OMB (OMBp5) can reduce ischemic gut injury in a rodent model. METHODS: The OMBp5 formulation was adapted to improve delivery of oxygen along the length of small intestine. Adult Sprague-Dawley rats (n = 24) were randomly allocated to three groups: sham-surgery (SS), intestinal ischemia (II), and intestinal ischemia plus luminal delivery of OMBp5 (II + O). Ischemia-reperfusion injury was induced by superior mesenteric artery occlusion for 45 min followed by reperfusion for 30 min. Outcome data included macroscopic score of mucosal injury, the histological score of gut injury, and plasma biomarkers of intestinal injury. RESULTS: Macroscopic, microscopic data, and intestinal injury biomarker results demonstrated minimal intestinal damage in the SS group and constant damage in the II group. II + O group had a significantly improved macroscopic score throughout the gut mucosa (P = 0.04) than the II. The mean histological score of gut injury for the II + O group was significantly improved on the II group (P ≤ 0.01) in the proximal intestine only, within 30 cm of delivery. No differences were observed in plasma biomarkers of intestinal injury following OMBp5 treatment. CONCLUSIONS: This proof-of-concept study has demonstrated that luminal OMBp5 decreases ischemic injury to the proximal small intestine. There is a need to improve oxygen delivery over the full length of the intestine. These findings support further studies with clinically relevant end points, such as systemic inflammation and vital organ dysfunction.


Assuntos
Isquemia Mesentérica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Roedores , Pectinas , Microbolhas , Isquemia/etiologia , Isquemia/terapia , Isquemia/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/terapia , Isquemia Mesentérica/patologia , Biomarcadores , Mucosa Intestinal/patologia , Intestinos/patologia
3.
Microorganisms ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399697

RESUMO

Cancer therapies developed using bacteria and their components have been around since the 19th century. Compared to traditional cancer treatments, the use of bacteria-derived compounds as cancer therapeutics could offer a higher degree of specificity, with minimal off-target effects. Here, we explored the use of soluble bacteria-derived toxins as a potential squamous cell carcinoma (SCC) therapeutic. We optimized a protocol to generate Staphylococcus aureus biofilm-conditioned media (BCM), where soluble bacterial products enriched in the development of biofilms were isolated from a bacterial culture and applied to SCC cell lines. Bioactive components of S. aureus ATCC 29213 (SA29213) BCM display selective toxicity towards cancerous human skin SCC-12 at low doses, while non-cancerous human keratinocyte HaCaT and fibroblast BJ-5ta are minimally affected. SA29213 BCM treatment causes DNA damage to SCC-12 and initiates Caspase 3-dependent-regulated cell death. The use of the novel SA29213 bursa aurealis transposon mutant library led to the identification of S. aureus alpha hemolysin as the main bioactive compound responsible for the observed SCC-12-specific toxicity. The antibody neutralisation of Hla eradicates the cytotoxicity of SA29213 BCM towards SCC-12. Hla displays high SCC-12-specific toxicity, which is exerted primarily through Hla-ADAM10 interaction, Hla oligomerisation, and pore formation. The high target specificity and potential to cause cell death in a controlled manner highlight SA29213 Hla as a good candidate as an alternative SCC therapeutic.

4.
Phys Chem Chem Phys ; 26(9): 7664-7673, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38369945

RESUMO

Samarium hexaboride, SmB6, is a negative thermal expansion (NTE) material whose structure is similar to other known NTE materials such as the family of Prussian blues. In the Prussian blues, NTE is due to a phonon mechanism, but we recently showed from DFT calculations that this is unlikely in SmB6 (Li et al., Phys. Chem. Chem. Phys. 2023, 25, 10749). We now report experimental X-ray diffraction and pair distribution function analysis of this material in the temperature range 20-300 K. The interatomic distances shown by both methods are consistent with the NTE instead arising from an electronic effect, by which the samarium atoms lose electrons and thus have a smaller ionic radius as the temperature increases.

5.
Neuropharmacology ; 246: 109849, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244888

RESUMO

Cognitive impairment is a debilitating feature of psychiatric disorders including schizophrenia, mood disorders and substance use disorders for which there is a substantial lack of effective therapies. d-Govadine (d-GOV) is a tetrahydroprotoberberine recently shown to significantly enhance working memory and behavioural flexibility in several prefrontal cortex (PFC)-dependent rodent tasks. d-GOV potentiates dopamine (DA) efflux in the mPFC and not the nucleus accumbens, a unique pharmacology that sets it apart from many dopaminergic drugs and likely contributes to its effects on cognitive function. However, specific mechanisms involved in the preferential effects of d-GOV on mPFC DA function remain to be determined. The present study employs brain dialysis in male rats to deliver d-GOV into the mPFC or ventral tegmental area (VTA), while simultaneously sampling DA and norepinephrine (NE) efflux in the mPFC. Intra-PFC delivery or systemic administration of d-GOV preferentially potentiated medial prefrontal DA vs NE efflux. This differential effect of d-GOV on the primary catecholamines known to affect mPFC function further underscores its specificity for the mPFC DA system. Importantly, the potentiating effect of d-GOV on mPFC DA was disrupted when glutamatergic transmission was blocked in either the mPFC or the VTA. We hypothesize that d-GOV acts in the mPFC to engage the mesocortical feedback loop through which prefrontal glutamatergic projections activate a population of VTA DA neurons that specifically project back to the PFC. The activation of a PFC-VTA feedback loop to elevate PFC DA efflux without affecting mesolimbic DA release represents a novel approach to developing pro-cognitive drugs.


Assuntos
Alcaloides de Berberina , Dopamina , Nootrópicos , Humanos , Ratos , Masculino , Animais , Dopamina/farmacologia , Nootrópicos/farmacologia , Ratos Sprague-Dawley , Norepinefrina/farmacologia , Área Tegmentar Ventral , Córtex Pré-Frontal
6.
Biomech Model Mechanobiol ; 23(1): 3-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902894

RESUMO

Historically, research into the lymphatic system has been overlooked due to both a lack of knowledge and limited recognition of its importance. In the last decade however, lymphatic research has gained substantial momentum and has included the development of a variety of computational models to aid understanding of this complex system. This article reviews existing computational fluid dynamic models of the lymphatics covering each structural component including the initial lymphatics, pre-collecting and collecting vessels, and lymph nodes. This is followed by a summary of limitations and gaps in existing computational models and reasons that development in this field has been hindered to date. Over the next decade, efforts to further characterize lymphatic anatomy and physiology are anticipated to provide key data to further inform and validate lymphatic fluid dynamic models. Development of more comprehensive multiscale- and multi-physics computational models has the potential to significantly enhance the understanding of lymphatic function in both health and disease.


Assuntos
Hidrodinâmica , Vasos Linfáticos , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Simulação por Computador , Física
8.
Cells ; 12(24)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132176

RESUMO

In the skin, repeated incidents of ischemia followed by reperfusion can result in the breakdown of the skin and the formation of a pressure ulcer. Here we gently applied paired magnets to the backs of mice to cause ischemia for 1.5 h and then removed them to allow reperfusion. The sterile inflammatory response generated within 4 h causes a stage 1 pressure ulcer with an elevation of the gap junction protein Cx43 in the epidermis. If this process is repeated the insult will result in a more severe stage 2 pressure ulcer with a breakdown of the epidermis 2-3 days later. After a single pinch, the elevation of Cx43 in the epidermis is associated with the inflammatory response with an increased number of neutrophils, HMGB1 (marker of necrosis) and RIP3 (responsible for necroptosis). Delivering Cx43 specific antisense oligonucleotides sub-dermally after a single insult, was able to significantly reduce the elevation of epidermal Cx43 protein expression and reduce the number of neutrophils and prevent the elevation of HMGB1 and RIP3. In a double pinch model, the Cx43 antisense treatment was able to reduce the level of inflammation, necroptosis, and the extent of tissue damage and progression to an open wound. This approach may be useful in reducing the progression of stage 1 pressure ulcers to stage 2.


Assuntos
Proteína HMGB1 , Lesão por Pressão , Camundongos , Animais , Conexina 43/metabolismo , Conexinas/metabolismo , Isquemia
9.
Eur J Neurosci ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985418

RESUMO

Hypodopaminergia in the ventral striatum is a putative neurobiological correlate of withdrawal in opioid-dependent individuals. This perspective stands in contrast to brain imaging studies with chronic opioid users showing that naloxone-enhanced dopamine (DA) release in the dorsal striatum is positively correlated with withdrawal aversion. Here, we examined regional differences in striatal DA function associated with opioid withdrawal in rats exposed to intermittent morphine injections for 31 days. Basal concentrations of DA were reduced (i.e., indicating a hypodopaminergic state) in the ventral striatum on Day 10 of morphine exposure, whereas a more prolonged period of morphine treatment was required to reveal hypodopaminergia in the dorsal striatum on Day 31. The ventral striatum consistently exhibited naloxone-induced transient reductions in DA below the hypodopaminergic basal levels, whereas morphine enhanced DA efflux. In the dorsal striatum, DA responsivity to naloxone shifted from a significant decrease on Day 10 to a notable increase above hypodopaminergic basal levels on Day 31, corroborating the findings in the human dorsal striatum. Unexpectedly, the magnitude of morphine-evoked increases in DA efflux on Day 31 was significantly blunted relative to values on Day 10. These findings indicate that prolonged-intermittent access to morphine results in a sustained hypodopaminergic state as reflected in basal levels in the striatum, which is accompanied by regional differences in DA responsivity to naloxone and morphine. Overall, our findings suggest that prolonging the duration of morphine exposure to 31 days is sufficient to reveal neuroadaptations that may underlie the transition from initial drug exposure to opioid dependence.

10.
Mol Microbiol ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37485746

RESUMO

Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.

11.
Compr Physiol ; 13(3): 4945-4984, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358506

RESUMO

Following significant advances in lymphatic biology, the important role of kidney lymphatics in kidney function and dysfunction is now being more fully appreciated. Kidney lymphatics begin in the cortex as blind-ended lymphatic capillaries and then coalesce into larger lymphatics that follow the main blood vessels out through the kidney hilum. Their function in draining interstitial fluid, macromolecules, and cells underpins their important role in kidney fluid and immune homeostasis. This article provides a comprehensive overview of recent and more established research findings on kidney lymphatics and the implications of these findings for kidney function and disease. The use of lymphatic molecular markers has greatly expanded our knowledge of the development, anatomy, and pathophysiology of kidney lymphatics. Significant recent discoveries include the diverse embryological source of kidney lymphatics, the hybrid nature of the ascending vasa recta, and the effects of lymphangiogenesis on kidney diseases such as acute kidney injury and renal fibrosis. On the basis of these recent advances, there is now an opportunity to link information from across multiple research disciplines to drive a new era of lymphatic-targeted therapies for kidney disease. © 2023 American Physiological Society. Compr Physiol 13:4945-4984, 2023.


Assuntos
Vasos Linfáticos , Humanos , Sistema Linfático/anatomia & histologia , Rim , Linfangiogênese/fisiologia
12.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240217

RESUMO

Effective pain control is an underappreciated aspect of managing opioid withdrawal, and its absence presents a significant barrier to successful opioid detoxification. Accordingly, there is an urgent need for effective non-opioid treatments to facilitate opioid detoxification. l-Tetrahydropalmatine (l-THP) possesses powerful analgesic properties and is an active ingredient in botanical formulations used in Vietnam for the treatment of opioid withdrawal syndrome. In this study, rats receiving morphine (15 mg/kg, i.p.) for 5 days per week displayed a progressive increase in pain thresholds during acute 23 h withdrawal as assessed by an automated Von Frey test. A single dose of l-THP (5 or 7.5 mg/kg, p.o.) administered during the 4th and 5th weeks of morphine treatment significantly improves pain tolerance scores. A 7-day course of l-THP treatment in animals experiencing extended withdrawal significantly attenuates hyperalgesia and reduces the number of days to recovery to baseline pain thresholds by 61% when compared to vehicle-treated controls. This indicates that the efficacy of l-THP on pain perception extends beyond its half-life. As a non-opioid treatment for reversing a significant hyperalgesic state during withdrawal, l-THP may be a valuable addition to the currently limited arsenal of opioid detoxification treatments.


Assuntos
Hiperalgesia , Morfina , Ratos , Animais , Morfina/efeitos adversos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Analgésicos Opioides/efeitos adversos , Limiar da Dor
13.
Phys Chem Chem Phys ; 25(13): 9282-9293, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919868

RESUMO

High-entropy order-disorder phase transitions can be used for efficient and eco-friendly barocaloric solid-state cooling. Here the barocaloric effect is reported in an archetypal plastic crystal, adamantane. Adamantane has a colossal isothermally reversible entropy change of 106 J K-1 kg-1. Extremely low hysteresis means that this can be accessed at pressure differences less than 200 bar. Configurational entropy can only account for about 40% of the total entropy change; the remainder is due to vibrational effects. Using neutron spectroscopy and supercell lattice dynamics calculations, it is found that this vibrational entropy change is mainly caused by softening in the high-entropy phase of acoustic modes that correspond to molecular rotations. We attribute this difference in the dynamics to the contrast between an 'interlocked' state in the low-entropy phase and sphere-like behaviour in the high-entropy phase. Although adamantane is a simple van der Waals solid with near-spherical molecules, this approach can be leveraged for the design of more complex barocaloric molecular crystals. Moreover, this study shows that supercell lattice dynamics calculations can accurately map the effect of orientational disorder on the phonon spectrum, paving the way for studying the vibrational entropy, thermal conductivity, and other thermodynamic effects in more complex materials.

14.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678914

RESUMO

Pancreatic ductal adenocarcinoma remains a highly debilitating condition with no effective disease-modifying interventions. In our search for natural products with promising anticancer activity, we identified the aminolipopeptide trichoderin A as a potential candidate. While it was initially isolated as an antitubercular peptide, we provide evidence that it is also selectively toxic against BxPC-3 and PANC-1 human pancreatic ductal adenocarcinoma cells cultured under glucose deprivation. This has critical implications for the pancreatic ductal adenocarcinoma, which is characterized by nutrient deprivation due to its hypovascularized network. We have also successfully simplified the trichoderin A peptide backbone, allowing greater accessibility to the peptide for further biological testing. In addition, we also conducted a preliminary investigation into the role of peptide lipidation at the N-terminus. This showed that analogues with longer fatty acyl chains exhibited superior cytotoxicity than those with shorter acyl chains. Further structural optimization of trichoderin A is anticipated to improve its biological activity, whilst ongoing mechanistic studies to elucidate its intracellular mechanism of action are conducted in parallel.

15.
ANZ J Surg ; 93(4): 859-868, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537566

RESUMO

BACKGROUND: Acute Mesenteric Ischaemic (AMI) is a rare condition with significant morbidity and mortality. Many causes of AMI exist, which usually begin with mucosal injury. Onset is insiduous and there is frequent diagnostic delay. Current treatments can only control established injury and prevent propagation, hence new interventions are needed. The prevention and treatment of AMI by intraluminal delivery of oxygen has yet to be investigated in the clinical setting. This article aims to systemically review experimental studies investigating this novel therapy. METHODS: Following the PRISMA guidelines, searches of PubMed and Ovid MEDLINE databases were performed up to June 2022. Two independent investigators extracted the data. RESULTS: There were 20 experimental studies, 16 of which used an occlusive ischaemia reperfusion model. Six different formulations were used to deliver intraluminal oxygen, with perflurocarbon being the most common. Studies consistently showed local and systemic benefits. Intraluminal oxygen therapy improved histological severity of mucosal injury in all studies when oxygen was delivered during the ischaemia phase, but could cause harm if given during the reperfusion phase. Improvement was also demonstrated in endpoints assessing intestinal function, biomarkers of intestinal damage, measures of systemic physiological derangement and mortality. CONCLUSION: Intraluminal oxygenation appears to be an effective treatment for AMI. There remain significant questions regarding optimal timing and delivery formulation before clinical translation of this treatment strategy.


Assuntos
Isquemia Mesentérica , Humanos , Animais , Isquemia Mesentérica/terapia , Isquemia Mesentérica/diagnóstico , Oxigênio , Diagnóstico Tardio , Mesentério , Isquemia/terapia
17.
Life (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36362888

RESUMO

OBJECTIVE: Post-surgical peritoneal adhesions are a serious problem for the quality of life and fertility. Yet there are no effective ways of preventing their occurrence. The gap junction protein Cx43 is known to be involved in fibrosis in several different organs and disease conditions often associated with inflammation. Here we examined the Cx43 dynamic expression in an ischemic button model of surgical adhesions. METHODS: Using the mouse ischemic button model, Cx43 antisense was delivered in Pluronic gel to attenuate Cx43 expression. The severity of button formation and immunofluorescence analysis of Cx43 and TGF-ß1 were performed. The concentration of tissue plasminogen activator via ELISA was also performed. RESULTS: As early as 6 h after button formation, the Cx43 levels were elevated in and around the button and some weak adhesions were formed. By 24 h Cx43 levels had increased further and adhesions were more defined. At 7 days the adhesions were much more robust, opaque, and vascularized, requiring blunt or sharp dissection to break them. Cx43 antisense attenuated its upregulation and, reduced the number and severity of adhesions that formed. CONCLUSION: Targeting Cx43 after surgical procedures may be a potential therapeutic strategy for preventing adhesion formation or at least reducing their severity.

18.
Am J Physiol Heart Circ Physiol ; 323(5): H1010-H1018, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206050

RESUMO

The cisterna chyli is a lymphatic structure found at the caudal end of the thoracic duct that receives lymph draining from the abdominal and pelvic viscera and lower limbs. In addition to being an important landmark in retroperitoneal surgery, it is the key gateway for interventional radiology procedures targeting the thoracic duct. A detailed understanding of its anatomy is required to facilitate more accurate intervention, but an exhaustive summary is lacking. A systematic review was conducted, and 49 published human studies met the inclusion criteria. Studies included both healthy volunteers and patients and were not restricted by language or date. The detectability of the cisterna chyli is highly variable, ranging from 1.7 to 98%, depending on the study method and criteria used. Its anatomy is variable in terms of location (vertebral level of T10 to L3), size (ranging 2-32 mm in maximum diameter and 13-80 mm in maximum length), morphology, and tributaries. The size of the cisterna chyli increases in some disease states, though its utility as a marker of disease is uncertain. The anatomy of the cisterna chyli is highly variable, and it appears to increase in size in some disease states. The lack of well-defined criteria for the structure and the wide variation in reported detection rates prevent accurate estimation of its natural prevalence in humans.


Assuntos
Ducto Torácico , Humanos , Ducto Torácico/diagnóstico por imagem , Ducto Torácico/anatomia & histologia , Prevalência
19.
IUCrJ ; 9(Pt 5): 533-535, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071799

RESUMO

The perovskites are an intensely studied class of materials, with a breadth of possible compositions made even wider by the possibility of incorporating molecular ions. Here the context is discussed of a newly reported metal-free perovskite with the H3O+ ion on the B site.

20.
Handb Clin Neurol ; 188: 151-178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965025

RESUMO

Breathing can be classified into metabolic and behavioral categories. Metabolic breathing and voluntary behavioral breathing are controlled in the brainstem and in the cerebral motor cortex, respectively. This chapter places special emphasis on the reciprocal influences between breathing and emotional processes. As is the case with neural control of breathing, emotions are generated by multiple control networks, located primarily in the forebrain. For several decades, a respiratory rhythm generator has been investigated in the limbic system. The amygdala receives respiratory-related input from the piriform cortex. Excitatory recurrent branches are located in the piriform cortex and have tight reciprocal synaptic connections, which produce periodic oscillations, similar to those recorded in the hippocampus during slow-wave sleep. The relationship between olfactory breathing rhythm and emotion is seen as the gateway to interpreting the relationship between breathing and emotion. In this chapter, we describe roles of breathing in the genesis of emotion, neural structures common to breathing and emotion, and mutual importance of breathing and emotion. We also describe the central roles of conscious awareness and voluntary control of breathing, as effective methods for stabilizing attention and the contents in the stream of consciousness. Voluntary control of breathing is seen as an essential practice for achieving emotional well-being.


Assuntos
Emoções , Córtex Olfatório , Hipocampo , Humanos , Sistema Límbico , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...